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ABSTRACT

As the field of unsupervised learning grows, there has been a proliferation of dif-
ferent loss functions to solve different classes of problems. We find that a large
collection of modern loss functions can be generalized by a single equation rooted
in information theory. In particular, we introduce I-Con, a framework that shows
that several broad classes of machine learning methods are precisely minimizing
an integrated KL divergence between two conditional distributions: the supervi-
sory and learned representations. This viewpoint exposes a hidden information
geometry underlying clustering, spectral methods, dimensionality reduction, con-
trastive learning, and supervised learning. I-Con enables the development of new
loss functions by combining successful techniques from across the literature. We
not only present a wide array of proofs, connecting over 11 different approaches,
but we also leverage these theoretical results to create state of the art unsupervised
image classifiers that achieve a +8% improvement over the prior state-of-the-art
on unsupervised classification on ImageNet-1K.

Figure 1: I-Con unifies representation learning methods. By choosing different types of condi-
tional probability distributions over neighbors, I-Con generalizes over 11 commonly used represen-
tation learning methods.

1 INTRODUCTION

In the past 10 years the field of representation learning has flourished, with new techniques, architec-
tures, and loss functions emerging daily. These advances have powered humanities’ most intelligent
models and have enabled machines to rely less and less on human supervision. However, as the
field of unsupervised learning grows, the number of distinct and specific loss functions grows in
turn making it difficult to understand which particular loss function to choose for a given problem or
domain. In this work we propose a novel mathematical framework that unifies several broad classes
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of supervised and unsupervised representation learning systems with a single information-theoretic
equation. Our framework, which we call Information Contrastive learning (I-Con) demonstrates
that many methods in clustering, spectral graph theory, contrastive learning, dimensionality reduc-
tion, and supervised learning are all specific instances of the same underlying loss function. Though
some specific connections implied by I-Con have been documented or approximated in the literature
Balestriero & LeCun (2022); Yang et al. (2022); Böhm et al. (2022); Hu et al. (2022), to the best of
the authors knowledge this is the first time the theory has been described in general. I-Con not only
unifies a broad swath of literature but provides a framework to build and discover new loss functions
and learning paradigms. In particular, the framework allows us to move techniques and results from
any given method, to improve every other method in the broader class. We use this technique to de-
rive new loss functions for unsupervised image classification that significantly outperform the prior
art on several standard datasets. We summarize our contributions:

• We present I-Con, a single equation that unifies several broad classes of methods in repre-
sentation learning

• We prove 9 theorems which connect a variety of methods to the I-Con framework
• We use I-Con to derive new improvements for unsupervised image classification and

achieve a +8% increase in unsupervised ImageNet-1K accuracy over the prior state-of-
the-art

• We carefully ablate our discovered improvements, demonstrating their efficacy.

2 RELATED WORK

Representation learning is a vast field with thousands of methods, we overview some of the key
methods that I-Con leverages and generalizes. We refer the interested reader to Le-Khac et al.
(2020); Bengio et al. (2013); Weng (2021) for more complete reviews of the representation and
contrastive learning literature.

Feature Learning aims to learn informative low-dimensional continuous vectors from high di-
mensional data. Feature learners come in a variety of flavors, using supervisory signals like distance
in a high dimensional space, nearest neighbors, known positive and negative pairs, auxiliary su-
pervised losses, and reconstruction loss. The most common methods learn directly from distances
between points in high dimensional space such as PCA Pearson (1901) which optimizes for recon-
struction error, MDS Kruskal (1964) which preserves distances between points. Other approaches
try to match pairwise high-dimensional distances, neighborhoods, or topological structure with low
dimensional vectors. Techniques include UMAP McInnes et al. (2018) which preserves a soft topol-
ogy of the points, and SNE/t-SNE Hinton & Roweis (2002); Van der Maaten & Hinton (2008) that
use a KL divergence to align joint distributions across low and high dimensional views of the data.
SNE and t-SNE were some of the first works to explicitly phrase their optimization in terms of KL
minimization between two joint distributions, which is the central idea of I-Con. Methods like Sim-
CLR Chen et al. (2020a), CMC Tian et al. (2020), CLIP Radford et al. (2021), MoCo v3 Chen*
et al. (2021), and others use positive and negative pairs of data, often formed through augmentations
or aligned corpora to drive feature learning. I-Con generalizes all of these frameworks and through
our analysis the subtle differences in how they implicitly construct their losses becomes apparent.
Finally, one of the most famous approaches for representation learning in fields like computer vi-
sion, uses the penultimate activations of a supervised classifier as informative features Krizhevsky
et al. (2017). Interestingly, I-Con generalizes this case as well if we consider discrete class labels as
“points” in a contrastive learning setup. This provides an intuitive justification for why penultimate
activations of supervised activations make high quality representations.

Clustering aims to learn a discrete representation for data, again using distances in ambient space,
nearest neighbors, or contrastive supervision. Classic methods like k-Means Macqueen (1967) and
EM Dempster et al. (1977) implicitly fit cluster distributions to data points to maximize data likeli-
hood. Spectral Clustering Shi & Malik (2000) uses the spectra of the graph Laplacian to cut a graph
into two strongly connected components. Methods like IIC Ji et al. (2019) and Contrastive Cluster-
ing Li et al. (2021) use augmentation invariance to drive learning. SCAN Gansbeke et al. (2020)
realized that including nearest neighbors as contrastive positive pairs could improve clustering and
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Figure 2: Architecture diagram of an I-Con model. I-Con aligns a parameterized neighborhood
distribution computed from a learned representation, with a supervisory neighborhood distribution
chosen by the method designer.

most recently TEMI Adaloglou et al. (2023) shows that student-teacher style EMA architectures
Chen et al. (2020b) can also improve outcomes. I-Con generalizes many of these methods, by
aligning a cluster-induced joint distribution with a supervisory joint distribution derived from either
distances, the graph Laplacian, or contrastive pairs. Improvements like EMA-style architectures can
be included naturally in I-Con as different parameterizations of the clusters that are optimized with
the central I-Con loss.

Unifying unsupervised learning methods has been a goal of several existing and seminal works
in the literature. Hu et al. (2022) discovered that contrastive learning and t-SNE could be seen as two
different aspects of the same loss. Yang et al. (2022) found that cross-entropy and contrastive learn-
ing could be unified by considering different kinds of neighbor relations between points. Balestriero
& LeCun (2022) found approximate connections between spectral methods and contrastive learn-
ing. Grosse et al. (2012) showed how many common classical unsupervised learners can be derived
with Bayesian tensor factorization grammars. These prior works are elegant and impactful, however
to the best of our knowledge we are the first to describe the unification of supervised, contrastive,
dimensionality reduction, spectral graph, and clustering methods using a single KL divergence loss.

3 METHODS

The I-Con framework unifies several representation learning methods using a single loss function:
minimizing the KL divergence between a pair of conditional “neighborhood distributions” which
measure the probability of transition from a data point i to a point j. I-Con’s single information-
theoretic objective generalizes methods from the fields of clustering, contrastive learning, dimen-
sionality reduction, spectral graph theory, and supervised learning. By choosing how we construct
the supervisory neighborhood distribution, and parameterize the neighborhood distribution of the
learned representation, we can create a broad class of existing and novel methods using I-Con. We
first introduce I-Con, then use the framework to aggregate important techniques from across the
broader literature to make a novel state of the art unsupervised image classification method.

3.1 INFORMATION CONTRASTIVE LEARNING

We begin by defining the mathematical objects of interest. Let i, j ∈ X represent two abstract
points of a broader set X . We can then form a probabilistic “neighborhood” around a point j using
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a function p(j|i). Intuitively, this function measures the probability to “transition” from a point i to
another point j ∈ X . To ensure this function is a proper probability density over X it should be non-
negative: p(j|i) ≥ 0, and sum to unity:

∫
j∈X p(j|i) = 1. Here we use the measure-theoretic integral,

which includes both the continuous integral and discrete summation depending on the choice of the
space X . Next, we parameterize this neighborhood distribution by abstract parameters, θ ∈ Θ.
Note that pθ(j|i) should be a distribution for all θ ∈ Θ. This parameterization transforms p into
a learnable distribution that can adapt the neighborhoods around each point. Next, let qϕ(j|i) be
a similarly defined family of distributions parameterized by an abstract parameter space ϕ ∈ Φ.
With these two families of neighborhood distributions defined we can write the main loss function
of I-Con:

L(θ, ϕ) =
∫
i∈X

DKL (pθ(·|i)||qϕ(·|i)) =
∫
i∈X

∫
j∈X

pθ(j|i) log
pθ(j|i)
qϕ(j|i)

(3.1.1)

Where for clarity, DKL, represents the Kullback-Leibler divergence Kullback & Leibler (1951).
Intuitively this loss function measures the average similarity between the two parameterized neigh-
borhood distributions and is minimized when pθ(j|i) = qϕ(j|i). In practice, one of the distributions
usually p, is set to a fixed “supervisory” distribution with no optimizable parameters θ. We will
sometimes omit the parameterization in this case refer to it as p(j|i). In these scenarios the re-
maining distribution, qϕ, is parameterized by a comparison of deep network representations or a
comparison of prototypes, clusters, or per-point representations. We illustrate this architecture in
Figure 2. Minimizing equation 3.1.1 aligns this “learned” distribution qθ to the “supervisory” dis-
tribution p by minimizing the average KL divergence between p and q. In the next section, we will
show that by selecting different types of parameterized neighborhood distributions p and q, several
common methods in the literature emerge as special cases. Interestingly, we note that it is possible to
optimize both pθ and qϕ even though no existing methods use this generality. This is an interesting
avenue for future study, though we caution that if a uniform distribution is possible in both families
of distributions, the optimization will find a trivial solution. Nevertheless, it could be possible to
choose the families of distributions pθ and qϕ carefully so that useful behavior emerges.

3.2 UNIFYING REPRESENTATION LEARNING ALGORITHMS WITH I-CON

Despite the incredible simplicity of Equation 3.1.1, this equation is rich enough to generalize several
existing methods in the literature simply through the choice of parameterized neighborhood distri-
butions pθ and qϕ. Table 1 summarizes some key choices which recreate popular methods from
contrastive learning (SimCLI, MOCOv3, SupCon, CMC, CLIP), dimensionality reduction (SNE,
t-SNE), clustering (K-Means, Spectral, TEMI), and supervised learning (Cross-Entropy and Mean
Squared Error). Due to limited space, we defer proofs of each of these theorems to the supplemental
material. We also note that Table 1 is most certainly not exhaustive, and encourage the community
to explore whether other unsupervised learning frameworks implicitly minimize Equation 3.1.1 for
some choice of p and q.

Though there are too many methods unified by I-Con to explain each in detail here, we give an
intuitive explanation of how the various choices of p and q generalize SNE and InfoNCE to help
the reader gain intuition. The simplest and most direct method to generalize with the I-Con loss
is SNE, which was originally phrased as a KL divergence minimization problem. Given a n-
dimensional dataset of d vectors, x ∈ Rd×n, SNE aims to learn a m-dimensional vector repre-
sentation, ϕ ∈ Rd×m, such that local relationships between high dimensional datapoints are approx-
imately preserved in the low-dimensional representation. The challenge is that the representation
dimension, m, is usually much smaller than the data dimensionality n, so the learned representation
is significantly constrained. More formally, SNE constructs a probabilistic neighborhood function,
p(j|i), around a point xi, by placing a symmetric Gaussian at xi and evaluating this distribution at
candidate neighbors xj . It does the same in the low dimensional space to create qϕ(j|i) by placing
a Gaussian at the learned representation vector ϕi and comparing to ϕj . Finally, SNE learns the
representation parameters ϕ to minimize the average KL Divergence, which is exactly the I-Con
loss function.

We only need to slightly modify SNE to derive the InfoNCE loss used in contrastive learning ap-
proaches like SimCLR and MocoV3. The first difference is that contrastive learners don’t typically
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Method Choice of pθ(j|i) Choice of qϕ(j|i)

SNE
Hinton & Roweis

(2002)
Theorem 1

Gaussians on Datapoints, xi

exp
(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )

Gaussians on Learned Vectors, ϕi

exp
(
−∥ϕi − ϕj∥2

)∑
k ̸=i exp (−∥ϕi − ϕk∥2)

tSNE
Van der Maaten &

Hinton (2008)
Theorem 2

Perplexity-sized Gaussians on Datapoints, xi

exp
(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )

Cauchy Distributions on Learned
Vectors, ϕi(
1 + ∥ϕi − ϕj∥2

)−1∑
k ̸=i (1 + ∥ϕi − ϕk∥2)−1

InfoNCE
Bachman et al.

(2019)
Theorem 3

Uniform over positive pairs
1

Z
1[i and j are positive pairs ]

Gaussian based on deep features, fϕ(xi)
exp

(
−∥fϕ(xi)− fϕ(xj)∥2

)∑
k ̸=i exp (−∥fϕ(xi)− fϕ(xk)∥2)

SupCon
Khosla et al. (2020)

Theorem 3

Uniform over classes
1

Z
1[i and j have the same class ]

Gaussian based on deep features, fϕ(xi)
exp

(
−∥fϕ(xi)− fϕ(xj)∥2

)∑
k ̸=i exp (−∥fϕ(xi)− fϕ(xk)∥2)

InfoNCE
Clustering

(New in this work)

Uniform over positive pairs
1

Z
1[i and j are positive pairs ]

Shared cluster likelihood by point
fϕ(xi) · fϕ(xj)

E[size of xi’s cluster w.r.t fϕ]

Probabilistic
k-Means

Macqueen (1967)
Theorem 6

Shared cluster likelihood by cluster
m∑

c=1

p(fθ(xi) and fθ(xj) are in cluster c)
E[size of cluster c]

Gaussians on Datapoints, xi

exp
(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )

Normalized Cuts
Shi & Malik (2000)

Theorem 8

Degree-weighted shared cluster likelihood by
cluster

m∑
c=1

p(fθ(xi) and fθ(xj) are in cluster c) · dj
E[degree of members of cluster c]

Gaussians on edge weights
exp(wij/dj)∑
k exp(wik/dk)

Mutual Information
Clustering

Adaloglou et al.
(2023)

Theorem 7

Uniform over nearest neighbors
1

k
1[j is a k-nearest neighbor of i]

Shared cluster likelihood by cluster
m∑

c=1

p(fϕ(xi) and fϕ(xj) are in cluster c)
E[size of cluster c]

CMC & CLIP
Tian et al. (2020)

Theorem 4

Uniform over positive pairs from different
modalities V

1

Z
1[i and j are positive pairs and Vi ̸= Vj ]

Gaussian based on deep features, fϕ(xi)
exp

(
−∥fϕ(xi)− fϕ(xj)∥2

)∑
k∈Vj

exp (−∥fϕ(xi)− fϕ(xk)∥2)

Cross Entropy
Good (1963)
Corollary 1

Indicator function over Labels
1

|C|1[i ∈ D is a data point in a class j ∈ C]

Gaussian based on deep features
exp (fϕ(xi) · ϕj)∑

k∈C exp (fϕ(xi) · ϕk)

Table 1: I-Con unifies representation learners under different choices of pθ(j|i) and qϕ(j|i).
Proofs of the propositions in this table can be found in the supplement.

learn a separate representation ϕi for every datapoint xi, but instead learn a parameterized repre-
sentation function fϕ(xi) to create representations for data. Secondly, these methods don’t rely
on Gaussian neighborhoods in the original data space, instead they use a discrete neighborhood
of known positive pairs for each point xi. In practice these positive pairs are usually formed by
augmenting or transforming data, such as horizontally flipping or blurring images. When the KL
divergence is taken between this discrete neighborhood and the Gaussian neighborhoods in deep
feature space, we precisely re-derive the InfoNCE loss function. To create MocoV3, we use a stu-
dent model fϕ(xi) to featurize a point and an exponential moving averaged teacher model g(xj) to
represent the neighboring point.
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3.3 CREATING NEW REPRESENTATION LEARNERS WITH I-CON

I-Con not only allows one to generalize many methods with a single equation but allows one to trans-
fer insights across different domains of representation learning. This allows techniques from one
area, like contrastive learning, to improve methods in another area like clustering. In this work we
show that by surveying modern dimensionality and representation learners we can create new clus-
tering and unsupervised classification methods that perform much better than the prior art. In par-
ticular, we transfer intuitions from spectral clustering, t-SNE, debiased contrastive learning Chuang
et al. (2020) and SCAN to create a state-of-the-art unsupervised image classification system.

Adaptive neighborhoods like SNE and t-SNE take a great advantage from having adaptive neigh-
borhood specified by, “perplexity”, which is an effective measure of local neighbors instead of using
fixed-variance Gaussians which might affect the representation of points in a high density neigh-
borhoods, and other approximations of t-SNE approximate the Gaussian distribution directly with
a uniform distribution over KNN neighbors to handle large datasets. Similarly, Table 1 shows that
by swapping k-Means’ Gaussian neighborhoods to (degree-weighted) KNN neighborhoods we re-
derive Spectral clustering, which is well known for its flexibility and quality. We leverage this
insight, and Tables 3 and 4 shows that training a contrastive learner with KNN-based neighborhood
distributions yields a significant improvement on unsupervised image classification.

Debiased Contrastive Learning aims to correct for the fact that contrastive learning typically
uses random points as negative samples. If a dataset has a small number of underlying classes,
this approach significantly overestimates the negative terms in contrastive learning. Chuang et al.
(2020) show that by solving this problem one can improve contrastive representation learning across
backbones and datasets. We leverage this technique in I-Con by adding a ‘debiasing‘ neighborhood
to the original contrastive training neighborhood p(j|i):

p̃(j|i) = (1− α)p(j|i) + α

N
(3.3.1)

Where α controls the amount of debiasing and N is the number of points in the neighborhood of
point i. Here the factor of N ensures the neighborhood probability distribution stays normalized.
Intuitively this modification adds an α

N amount of probability to each negative pair, counteract-
ing the aforementioned bias effects. Unlike the original formulation in Chuang et al. (2020), this
technique can now apply to any other class of methods I-Con generalizes including clusters and
dimensionality reducers. In Tables 3 and Figures 4 and 3 we show that this has a net positive effect
across all experiments and batch sizes tested. It also has the effect of relaxing the stiff clustering
optimization, similar to how label smoothing Szegedy et al. (2016) can improve model distillation
and generalization. We also explore debiasing the learned distribution as well as the supervisory
distribution, which also yields a performance improvement. This is in direct analogy to t-SNE’s
long tailed Cauchy distributions in the learned neighborhoods. Like in t-SNE this addition helps the
optimization find good local minima and avoid saturated solutions with vanishing gradients. This
can be seen both quantitatively and qualitatively in Figure 3

Neighbor Propagation as Kernel Smoothing in I-Con Another widespread technique in dimen-
sionality reduction, clustering, and contrastive learning is the use of nearest neighbors in deep feature
space to form positive pairs. Within the I-Con framework, this can be seen as an additional form
of kernel smoothing. For example, in contrastive learning, the target probabilities can be smoothed
by not only considering augmentations but also nearest neighbors in deep feature space. We can
also form walks on the nearest neighbor graph similiar to the successful Word-Graph2Vec algorithm
Li et al. (2023). We refer to this as neighbor propagation, and note that it significantly improves
performance.

The conditional distribution matrix P , which defines the probability of selecting xj as a neighbor of
xi (i.e., Pij = p(xj |xi)), can be interpreted as an adjacency matrix for the training data. A neighbor
propagation smoothing of this target distribution is established by considering the number of walks
of length at most k between points xi and xj :

P̃ ∝ P + P 2 + · · ·+ P k

6
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Figure 3: Left: Debiasing cluster learning improves performance across on ImageNet-1K batch
sizes. Center and Right: Debiased training reduces optimization stiffness and yields solutions that
are less likely to encounter saturated logits and vanishing gradients. These visualizations use a
subset of MNIST Deng (2012).

Further smoothing can be applied by transforming the probabilities into a uniform distribution over
neighbors reachable within k steps, leading to the following transformation:

P̃U ∝ I[P + P 2 + · · ·+ P k > 0]

This type of smoothing, based on propagation through nearest neighbors and walk-based ap-
proaches, effectively broadens the neighborhood structure considered during learning, allowing the
model to capture richer relationships within the data.

4 EXPERIMENTS

The primary objective of this work is to demonstrate that the I-Con framework offers testable hy-
potheses and practical insights into self-supervised and unsupervised learning. Rather than aiming
only for state-of-the-art performance, our goal is to show how I-Con can enhance existing unsu-
pervised learning methods by leveraging a unified information-theoretic approach. Through this
framework, we also highlight the potential for cross-pollination between techniques in varied ma-
chine learning domains, such as clustering, contrastive learning, and dimensionality reduction. This
transfer of techniques, enabled by I-Con, can significantly improve existing methodologies and open
new avenues for exploration.

We focus our experiments on clustering because it is relatively understudied compared to contrastive
learning and there are a variety of techniques that can now be adapted to this task. By connecting
established methods such as k-Means, SimCLR, and t-SNE within the I-Con framework, we uncover
a wide range of possibilities for improving clustering methods. We validate these theoretical insights
experimentally, demonstrating the practical impact of I-Con.

We evaluate the I-Con framework using the ImageNet-1K dataset Deng et al. (2009), which con-
sists of 1,000 classes and over one million high-resolution images. This dataset is considered one
of the most challenging benchmarks for unsupervised image classification due to its scale and com-
plexity. To ensure fair comparison with prior work, we strictly adhere to the experimental protocol
introduced by Adaloglou et al. (2023). The primary metric for evaluating clustering performance
is Hungarian Accuracy, which measures the quality of cluster assignments by finding the optimal
alignment between predicted clusters and ground truth labels via the Hungarian algorithm Ji et al.
(2019). This approach provides a robust measure of clustering performance in an unsupervised
context, where direct label supervision is absent during training.

For feature extraction, we utilize the DiNO pre-trained Vision Transformer (ViT) models in three
variants: ViT-S/14, ViT-B/14, and ViT-L/14 Caron et al. (2021). These models are chosen to ensure
comparability with previous work and to explore how the I-Con framework performs across varying

7
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Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14

k-Means 51.84 52.26 53.36
Contrastive Clustering 47.35 55.64 59.84
SCAN 49.20 55.60 60.15
TEMI 56.84 58.62 –
I-Con (Ours) 58.52 65.03 68.01

Table 2: Comparison of methods on ImageNet-1K clustering with respect to Hungarian Accuracy.
I-Con significantly outperforms the prior state-of-the-art TEMI. Note that TEMI does not report
results for ViT-L.

model capacities. The experimental setup, including training protocols, optimization strategies, and
data augmentation, mirrors those used in TEMI to ensure consistency in methodology.

The training process involved optimizing a linear classifier on top of the features extracted by the
DiNO models. Each model was trained for 30 epochs, using ADAM Kingma & Ba (2017) with
batch size of 4096 and an initial learning rate of 1e-3. The learning rate was decayed by a factor of
0.5 every 10 epochs to allow for stable convergence. Notably, no additional normalization was ap-
plied to the feature vectors. During training, we applied a variety of data augmentation techniques,
including random re-scaling, cropping, color jittering, and Gaussian blurring, to create robust fea-
ture representations. Furthermore, to enhance the clustering performance, we pre-computed global
nearest neighbors for each image in the dataset using cosine similarity. This allowed us to sample
two augmentations and two nearest neighbors for each image in every training batch, thus incorpo-
rating both local and global information into the learned representations. We refer to our approach
we derived in Table 2 as I-Con. In particular we use a supervisory neighborhood comprised of aug-
mentations, KNNs (k = 3), and KNN walks of length 1. We use the 11shared cluster likelihood
by cluster” neighbourhood from k-Means (See table 1 for Equation) as our learned neighborhood
function to drive cluster learning.

4.1 BASELINES

We compare our method against several state-of-the-art clustering methods, including TEMI, SCAN,
IIC, and Contrastive Clustering. These methods rely on augmentations and learned representations
but often require additional regularization terms or loss adjustments, such as controlling cluster size
or reducing the weight of affinity losses. In contrast, our I-Con-based loss function is self-balancing
and does not require such manual tuning, making it a cleaner, more theoretically grounded approach.
This allows us to achieve higher accuracy and more stable convergence across three different sized
backbones.

4.2 RESULTS

Table 2 shows the Hungarian accuracy of I-Con across different DiNO variants (ViT-S/14, ViT-B/14,
ViT-L/14) and compares it with several state-of-the-art clustering methods. The I-Con framework
consistently outperforms the other state-of-the-art methods across all model sizes. Specifically, for
the DiNO ViT-B/14 and ViT-L/14 models, I-Con achieves significant performance gains of +4.5%
and +7.8% in Hungarian accuracy compared to TEMI, the prior state-of-the-art ImageNet clusterer.
The improvements in performance can be attributed to two main factors:

Self-Balancing Loss: Unlike TEMI or SCAN, which require hand-tuned regularizations (e.g., bal-
ancing cluster sizes or managing the weight of affinity losses), I-Con’s loss function automatically
balances these factors without additional hyper-parameter tuning as we are using the exact same
clustering kernel used by k-Means. This theoretical underpinning leads to more robust and accurate
clusters.

Cross-Domain Insights: I-Con leverages insights from contrastive learning to refine clustering
by looking at pairs of images based on their embeddings, treating augmentations and neighbors
similarly. This approach, originally successful in contrastive learning, translates well into clustering
and leads to improved performance in high-dimensional, noisy image data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14

Baseline 55.51 63.03 65.70
+ Debiasing 57.05 63.77 66.69
+ KNN Propagation 58.52 64.87 67.35
+ EMA 57.62 65.03 68.01

Table 3: Ablation study of new techniques discovered through the I-Con framework. We compare
ImageNet-1K clustering accuracy across different sized backbones.

Figure 4: Effects of increasing the debias weight α on the supervisory neighborhood (blue line) and
both the learned and supervisory neighborhood (red line). Adding some amount of debiasing helps
in all cases, with a double debiasing yielding the largest improvements.

Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14
Baseline 55.51 63.03 65.72

+ KNNs 56.43 64.26 65.70
+ 1-walks on KNN 58.09 64.29 65.97
+ 2-walks on KNN 57.84 64.27 67.26
+ 3-walks on KNN 57.82 64.15 67.02

Table 4: Ablation Study on Neighbor Propagation. Adding both KNNs and walks of length 1 or 2
on the KNN graph achieves the best performance.

4.3 ABLATIONS

We conduct several ablation studies to experimentally justify the architectural improvements that
emerged from analyzing contrastive clustering through the I-Con framework. These ablations focus
on two key areas: the effect of incorporating debiasing into the target and embedding spaces and the
impact of neighbor propagation strategies which are both kernel smoothing methods.

We perform experiments with different levels of debiasing in the target distribution, denoted by
the parameter α, and test configurations where debiasing is applied on either the target side, both
sides (target and learned representations), or none. As seen in Figure 4, adding debiasing improves
performance, with the optimal value typically around α = 0.6 to α = 0.8, particularly when applied
to both sides of the learning process. This method is similar to how debiasing work in contrastive
learning by assuming that each negative sample has a non-zero probability (α/N ) of being incorrect.
Figure 3 shows how changing the value of α improves performance across different batch sizes.

In a second set of experiments, shown in Table 4, we examine the impact of neighbor propagation
strategies. We evaluate clustering performance when local and global neighbors are included in the
contrastive loss computation. Neighbor propagation, especially at small scales (s = 1 and s = 2),
significantly boosts performance across all model sizes, showing the importance of capturing local
structure in the embedding space. Larger neighbor propagation values (e.g., s = 3) offer diminishing
returns, suggesting that over-propagating neighbors may dilute the information from the nearest,

9
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most relevant points. Note that only DiNO-L/14 showed preference for large step size, and this is
likely due to its higher k-nearest neighbor ability, so the augmented links are correct.

Our ablation studies highlight that small adjustments in the debiasing parameter and neighbor prop-
agation can lead to notable improvements that achieve a state-of-the-art result with a simple loss
function. Additionally, sensitivity to α and propagation size varies across models, with larger mod-
els generally benefiting more from increased propagation but requiring fine-tuning of α for optimal
performance. We recommend using α ≈ 0.6 to α ≈ 0.8 and limiting neighbor propagation to small
values for a balance between performance and computational efficiency.

5 CONCLUSION

In summary, we have developed I-Con: a single information theoretic equation that unifies a broad
class of machine learning methods. We provided over 9 theorems that prove this assertion for many
of the most popular loss functions used in clustering, spectral graph theory, supervised and unsuper-
vised contrastive learning, dimensionality reduction, and supervised classification and regression.
We not only theoretically unify these algorithms but show that our connections can help us dis-
cover new state-of-the-art methods, and apply improvements discovered for a particular method to
any other method in the class. We illustrate this by creating a new method for unsupervised im-
age classification that achieves a +8% improvement over the prior art. We believe that the results
presented in this work represent just a fraction of the methods that are potentially unify-able with
I-Con, and we hope the community can use this viewpoint to improve collaboration and analysis
across algorithms and machine learning disciplines.
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A DIMENSIONALITY REDUCTION METHODS

We begin by defining the setup for dimensionality reduction methods in the context of I-Con. Let
xi ∈ Rd represent high-dimensional data points, and ϕi ∈ Rm represent their corresponding low-
dimensional embeddings, where m ≪ d. The goal of dimensionality reduction methods, such as
Stochastic Neighbor Embedding (SNE) and t-Distributed Stochastic Neighbor Embedding (t-SNE),
is to learn these embeddings such that neighborhood structures in the high-dimensional space are
preserved in the low-dimensional space. In this context, the low-dimensional embeddings ϕi can
be interpreted as the outputs of a mapping function fθ(xi), where fθ is essentially an embedding
matrix or look-up table. The I-Con framework is well-suited to express this relationship through a
KL divergence loss between two neighborhood distributions: one in the high-dimensional space and
one in the low-dimensional space.
Theorem 1. Stochastic Neighbor Embedding (SNE) Hinton & Roweis (2002) is an instance of the
I-Con framework.

Proof. This is one of the most straightforward proofs in this paper, essentially based on the definition
of SNE. The target distribution (supervised part), described by the neighborhood distribution in the
high-dimensional space, is given by:

pθ(j|i) =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )
,

while the learned low-dimensional neighborhood distribution is:

qϕ(j|i) =
exp

(
−∥ϕi − ϕj∥2

)∑
k ̸=i exp (−∥ϕi − ϕk∥2)

.

The objective is to minimize the KL divergence between these distributions:

L =
∑
i

DKL(pθ(·|i)∥qϕ(·|i)) =
∑
i

∑
j

pθ(j|i) log
pθ(j|i)
qϕ(j|i)

.

The embeddings θi are learned implicitly by minimizing L. The mapper is an embedding matrix,
as SNE is a non-parametric optimization. Therefore, SNE is a special case of the I-Con framework,
where pθ(j|i) and qϕ(j|i) represent the neighborhood probabilities in the high- and low-dimensional
spaces, respectively.

Theorem 2 (t-SNE Van der Maaten & Hinton (2008)). t-SNE is an instance of the I-Con framework.

Proof. The proof is similar to the one for SNE. While the high-dimensional target distribution
pθ(j|i) remains unchanged, t-SNE modifies the low-dimensional distribution to a Student’s t-
distribution with one degree of freedom (Cauchy distribution):

qϕ(j|i) =
(1 + ∥ϕi − ϕj∥2)−1∑
k ̸=i(1 + ∥ϕi − ϕk∥2)−1

.

The objective remains to minimize the KL divergence. Therefore, t-SNE is an instance of the I-Con
framework.

B FEATURE LEARNING METHODS

We now extend the I-Con framework to feature learning methods commonly used in contrastive
learning. Let xi ∈ Rd be the input data points, and fϕ(xi) ∈ Rm be their learned feature embed-
ding. In contrastive learning, the goal is to learn these embeddings such that similar data points
(positive pairs) are close in the embedding space, while dissimilar points (negative pairs) are far
apart. This setup can be expressed using a neighborhood distribution in the original space, where
”neighbors” are defined not by proximity in Euclidean space, but by predefined relationships such
as data augmentations or class membership. The learned embeddings fϕ(xi) define a new distribu-
tion over neighbors, typically using a Gaussian kernel in the learned feature space. We show that
InfoNCE is a natural instance of the I-Con framework, and many other methods, such as SupCon,
CMC, and Cross Entropy, follow from this.
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Theorem 3 (InfoNCE Bachman et al. (2019)). InfoNCE is an instance of the I-Con framework.

Proof. InfoNCE aims to maximize the similarity between positive pairs while minimizing it for
negative pairs in the learned feature space. In the I-Con framework, this can be interpreted as
minimizing the divergence between two distributions: the neighborhood distribution in the original
space and the learned distribution in the embedding space.

The neighborhood distribution pθ(j|i) is uniform over the positive pairs, defined as:

pθ(j|i) =
{

1
k if xj is among the k positive views of xi,

0 otherwise.

where k is the number of positive pairs for xi.

The learned distribution qϕ(j|i) is based on the similarities between the embeddings fϕ(xi) and
fϕ(xj), constrained to unit norm (∥fϕ(xi)∥ = 1). Using a temperature-scaled Gaussian kernel, this
distribution is given by:

qϕ(j|i) =
exp (fϕ(xi) · fϕ(xj)/τ)∑
k ̸=i exp (fϕ(xi) · fϕ(xk)/τ)

,

where τ is the temperature parameter controlling the sharpness of the distribution. Since ∥fϕ(xi)∥ =
1, the Euclidean distance between fϕ(xi) and fϕ(xj) is 2− 2(fϕ(xi) · fϕ(xj)).

The InfoNCE loss can be written in its standard form:

LInfoNCE = −
∑
i

log
exp

(
fϕ(xi) · fϕ(x+

i )/τ
)∑

k exp (fϕ(xi) · fϕ(xk)/τ)
,

where j+ is the index of a positive pair for i. Alternatively, in terms of cross-entropy, the loss
becomes:

LInfoNCE ∝
∑
i

∑
j

pθ(j|i) log qϕ(j|i) = H(pθ, qϕ),

where H(pθ, qϕ) denotes the cross-entropy between the two distributions. Since pθ(j|i) is
fixed, minimizing the cross-entropy H(pθ, qϕ) is equivalent to minimizing the KL divergence
DKL(pθ∥qϕ). By aligning the learned distribution qϕ(j|i) with the target distribution pθ(j|i), In-
foNCE operates within the I-Con framework, where the neighborhood structure in the original space
is preserved in the embedding space. Thus, InfoNCE is a direct instance of I-Con, optimizing the
same divergence-based objective.

Theorem 4. Contrastive Multiview Coding (CMC) and CLIP are instances of the I-Con framework.

Proof. Since we have already established that InfoNCE is an instance of the I-Con framework, this
corollary follows naturally. The key difference in Contrastive Multiview Coding (CMC) and CLIP is
that they optimize alignment across different modalities. The target probability distribution pθ(j|i)
can be expressed as:

pθ(j|i) =
1

Z
1[i and j are positive pairs and Vi ̸= Vj ],

where Vi and Vj represent the modality sets of xi and xj , respectively. Here, pθ(j|i) assigns uniform
probability over positive pairs drawn from different modalities.

The learned distribution qϕ(j|i), in this case, is based on a Gaussian similarity between deep fea-
tures, but conditioned on points from the opposite modality set. Thus, the learned distribution is
defined as:

qϕ(j|i) =
exp

(
−∥fϕ(xi)− fϕ(xj)∥2

)∑
k∈Vj

exp (−∥fϕ(xi)− fϕ(xk)∥2)
.

This formulation shows that CMC and CLIP follow the same principles as InfoNCE but apply them
in a multiview setting, fitting seamlessly within the I-Con framework by minimizing the divergence
between the target and learned distributions across different modalities.
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Corollary 1. Cross-Entropy classification is an instance of the I-Con framework.

Proof. Cross-Entropy can be viewed as a special case of the CMC loss, where one ”view” corre-
sponds to the data point features and the other to the class logits. The affinity between a data point
and a class is based on whether the point belongs to that class. This interpretation has been explored
in prior work, where Cross-Entropy was shown to be related to the CLIP loss Yang et al. (2022).

C CLUSTERING METHODS

The connections between clustering and the I-Con framework are more intricate compared to the
dimensionality reduction methods discussed earlier. To establish these links, we first introduce
a probabilistic formulation of K-means and demonstrate its equivalence to the classical K-means
algorithm, showing that it is a zero-gap relaxation. Building upon this, we reveal how probabilistic
K-means can be viewed as an instance of I-Con, leading to a novel clustering kernel. Finally, we
show that several clustering methods implicitly approximate and optimize for this kernel.

Definition 1 (Classical K-means). Let x1, x2, . . . , xN ∈ Rn denote the data points, and
µ1, µ2, . . . , µm ∈ Rn be the cluster centers.

The objective of classical K-means is to minimize the following loss function:

Lk-Means =

N∑
i=1

m∑
c=1

1(c(i) = c)∥xi − µc∥2,

where c(i) represents the cluster assignment for data point xi, and is defined as:

c(i) = argmin
c

∥xi − µc∥2.

C.1 PROBABILISTIC K-MEANS RELAXATION

In probabilistic K-means, the cluster assignments are relaxed by assuming that each data point xi

belongs to a cluster c with probability ϕic. In other words, ϕi represents the cluster assignments
vector for xi

Proposition 1. The relaxed loss function for probabilistic K-means is given by:

LProb-k-Means =

N∑
i=1

m∑
c=1

ϕic∥xi − µc∥2,

and is equivalent to the original K-means objective Lk-Means. The optimal assignment probabilities
ϕic are deterministic, assigning probability 1 to the closest cluster and 0 to others.

Proof. For each data point xi, the term
∑m

c=1 ϕic∥xi − µc∥2 is minimized when the assignment
probabilities ϕic are deterministic, i.e.,

ϕic =

{
1 if c = argminj ∥xi − µj∥2,
0 otherwise.

With these deterministic probabilities, LProb-k-Means simplifies to the classical K-means objective,
confirming that the relaxation introduces no gap.

C.1.1 CONTRASTIVE FORMULATION OF PROBABILISTIC K-MEANS

Definition 2. Let {xi}Ni=1 be a set of data points. Define the conditional probablity qϕ(j|i) as:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

,

where ϕi is the soft-cluster assignments for xi.
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Given qϕ(j|i), we can reformulate probabilistic K-means as a contrastive loss:
Theorem 5. Let {xi}Ni=1 ∈ Rn and {ϕic}Ni=1 be the corresponding assignment probabilities. Define
the objective function L as:

L = −
∑
i,j

(xi · xj) qϕ(j|i).

Minimizing L with respect to the assignment probabilities {ϕic} yields optimal cluster assignments
equivalent to those obtained by K-means.

Proof. The relaxed probabilistic K-means objective LProb-k-Means is:

LProb-k-Means =

N∑
i=1

m∑
c=1

ϕic∥xi − µc∥2.

Expanding this, we obtain:

LProb-k-Means =

m∑
c=1

(
N∑
i=1

ϕic

)
∥µc∥2 − 2

m∑
c=1

(
N∑
i=1

ϕicxi

)
· µc +

N∑
i=1

∥xi∥2.

The cluster centers µc that minimize this loss are given by:

µc =

∑N
i=1 ϕicxi∑N
i=1 ϕic

.

Substituting µc back into the loss function, we get:

L = −
∑
i,j

(xi · xj) qϕ(j|i),

L = −
∑
i,j

Aijqϕ(j|i)

W = XX⊤

W = V ΛV ⊤

L = −
∑
i,j

(vi · vj) qϕ(j|i),

L = −
∑
i,j

W̃ijqϕ(j|i)

W̃ = VkV
⊤
k

which proves that minimizing this contrastive formulation leads to the same clustering assignments
as classical K-means.

Corollary 2. The alternative loss function:

L = −
∑
i,j

∥xi − xj∥2 qϕ(j|i),

yields the same optimal clustering assignments when minimized with respect to {ϕic}.

Proof. Expanding the squared norm in the loss function gives:

L = −
∑
i,j

(
∥xi∥2 − 2xi · xj + ∥xj∥2

)
qϕ(j|i).

The terms involving ∥xi∥2 and ∥xj∥2 simplify since
∑

j qϕ(j|i) = 1, reducing the loss to:

L = 2

−
∑
i,j

xi · xjqϕ(j|i)

 ,

which is equivalent to the objective in the previous theorem.
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C.2 PROBABILISTIC K-MEANS AS AN I-CON METHOD

In the I-Con framework, the target and learned distributions represent affinities between data points
based on specific measures. For instance, in SNE, these measures are Euclidean distances in high-
and low-dimensional spaces, while in SupCon, the distances reflect whether data points belong to
the same class. Similarly, we can define a measure of neighborhood probabilities in the context
of clustering, where two points are considered neighbors if they belong to the same cluster. The
probability of selecting xj as xi’s neighbor is the probability that a point, chosen uniformly at
random from xi’s cluster, is xj . More explicitly, let qϕ(j|i) represent the probability that xj is
selected uniformly at random from xi’s cluster:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.

Theorem 6 (K-means as an instance of I-Con). Given data points {xi}Ni=1, define the neighborhood
probabilities pθ(j|i) and qϕ(j|i) as:

pθ(j|i) =
exp

(
−∥xi − xj∥2/2σ2

)∑
k exp (−∥xi − xk∥2/2σ2)

, qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.

Let the loss function Lc-SNE be the sum of KL divergences between the distributions qϕ(j|i) and
pθ(j|i):

Lc-SNE =
∑
i

DKL(qϕ(·|i)∥pθ(·|i)).

Then,

Lc-SNE =
1

2σ2
LProb-k-Means −

∑
i

H(qϕ(·|i)),

where H(qϕ(·|i)) is the entropy of qϕ(·|i).

Proof. For simplicity, assume that 2σ2 = 1. Denote
∑

k exp
(
−∥xi − xk∥2

)
by Zi. Then we have:

log pθ(j|i) = −∥xi − xj∥2 − logZi.

Let Li be defined as −
∑

j ∥xi − xj∥2 qϕ(j|i). Using the equation above, Li can be rewritten as:

Li = −
∑
j

∥xi − xj∥2 qϕ(j|i) (C.2.1)

=
∑
j

(log(pθ(j|i)) + log(Zi))qϕ(j|i) (C.2.2)

=
∑
j

qϕ(j|i) log(pθ(j|i)) +
∑
j

qϕ(j|i) log(Zi) (C.2.3)

=
∑
j

qϕ(j|i) log(pθ(j|i)) + log(Zi) (C.2.4)

= H(qϕ(·|i), pθ(·|i)) + log(Zi) (C.2.5)
= DKL(qϕ(·|i)∥pθ(·|i)) +H(qϕ(·|i)) + log(Zi). (C.2.6)

Therefore, LProb-KMeans, as defined in Corollary 2, can be rewritten as:

LProb-KMeans = −
∑
i

∑
j

∥xi − xj∥2 qϕ(j|i) =
∑
i

Li (C.2.7)

=
∑
i

DKL(qϕ(·|i)∥pθ(·|i)) +H(qϕ(·|i)) + log(Zi) (C.2.8)

= Lc-SNE +
∑
i

H(qϕ(·|i)) + constant. (C.2.9)
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Therefore,
Lc-SNE = LProb-KMeans −

∑
i

H(qϕ(·|i)).

If we allow σ to take any value, the entropy penalty will be weighted accordingly:

Lc-SNE =
1

2σ2
LProb-KMeans −

∑
i

H(qϕ(·|i)).

Note that the relation above is up to an additive constant. This implies that minimizing the con-
trastive probabilistic K-means loss with entropy regularization minimizes the sum of KL divergences
between qϕ(·|i) and pθ(·|i).

Theorem 7. Mutual Information Clustering is an instance of I-Con.

Proof. Given the connection established between SimCLR, K-Means, and the I-Con framework,
this result follows naturally. Specifically, the target distribution pθ(j|i) (the supervised part) is a
uniform distribution over observed positive pairs:

pθ(j|i) =
{

1
k if xj is among the k positive views of xi,

0 otherwise.

On the other hand, the learned embeddings ϕi represent the probabilistic assignments of xi into
clusters. Therefore, similar to the analysis of the K-Means connection, the learned distribution is
modeled as:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.

This shows that Mutual Information Clustering can be viewed as a method within the I-Con frame-
work, where the learned distribution qϕ(j|i) aligns with the target distribution pθ(j|i), completing
the proof.

Theorem 8. Normalized Cuts Shi & Malik (2000) is an instance of I-Con.

Proof. The proof for this follows naturally from our work on K-Means analysis. The loss function
for normalized cuts is defined as:

LNormCuts =

m∑
c=1

cut(Ac, Ac)

vol(Ac)
,

where Ac is a subset of the data corresponding to cluster c, Ac is its complement, and cut(Ac, Ac)
represents the sum of edge weights between Ac and Ac, while vol(Ac) is the total volume of cluster
Ac, i.e., the sum of edge weights within Ac.

Similar to K-Means, by reformulating this in a contrastive style with soft-assignments, the learned
distribution can be expressed using the probabilistic cluster assignments ϕic = p(c|xi) as:

qϕ(j|i) =
m∑
c=1

ϕicϕjcdj∑N
k=1 ϕkcdk

,

where dj is the degree of node xj , and the volume and cut terms can be viewed as weighted sums
over the soft-assignments of data points to clusters.

This reformulation shows that normalized cuts can be written in a manner consistent with the I-
Con framework, where the target distribution pθ(j|i) and the learned distribution qϕ(j|i) represent
affinity relationships based on graph structure and cluster assignments.

Thus, normalized cuts is an instance of I-Con, where the loss function optimizes the neighborhood
structure based on the cut and volume of clusters in a manner similar to K-Means and its probabilistic
relaxations.

18


	Introduction
	Related Work
	Methods
	Information Contrastive Learning
	Unifying Representation Learning Algorithms with I-Con
	Creating New Representation Learners with I-Con

	Experiments
	Baselines
	Results
	Ablations

	Conclusion
	Dimensionality Reduction Methods
	Feature Learning Methods
	Clustering Methods
	Probabilistic K-means Relaxation
	Contrastive Formulation of Probabilistic K-means

	Probabilistic K-means as an I-Con Method


